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ABSTRACT 

The Joint Tactical Information Distribution System (JTIDS) is a hybrid 

frequency-hopped, direct sequence spread spectrum system. A (31, 15) Reed-Solomon 

(RS) code is used for forward error correction coding, and cyclical code-shift keying 

(CCSK) M-ary modulation is used, where each encoded symbol represents five bits. In 

this thesis, a compatible waveform consistent with the existing JTIDS channel waveform 

is analyzed. The system considered uses the same (31, 15) RS encoding as JTIDS. The 

coded symbols are then transmitted on the in-phase (I) and quadrature (Q) components of 

the carrier using 32-ary orthogonal signaling with 32-chip baseband waveforms and 

detected noncoherently. For noncoherent detection, only one five bit symbol is 

transmitted on both the I and Q components of the carrier, so the data throughput for 

noncoherent detection is ½ that of coherent detection. This alternative waveform is 

consistent with the direct sequence waveform generated by JTIDS. A sequential diversity 

of two, consistent with the double-pulse structure of JTIDS, is also assumed, and 

performance is examined both for the case of linear, soft diversity combining and also for 

soft diversity combining with side information. The type of side information considered 

is perfect side information (PSI).  

Based on the analysis, we conclude that the double-pulse structure outperforms 

the single-pulse structure for the alternative JTIDS waveform under examination. 

Moreover, pulsed-noise interference (PNI) degrades the performance of the receiver, but 

the use of PSI reduces the effect of PNI.  
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EXECUTIVE SUMMARY 

Network-centric warfare (NCW) is an emerging theory of war applied in modern 

military operations in order to improve their effectiveness. To achieve this, NCW applies 

information age concepts to speed communications and increase situational awareness 

through networking. As a result, NCW transforms the efficient flow of information into 

combat power by linking allied forces across the battlefield, thus enabling them to 

employ more effective decision making during military operations.  

One of the most demanding requirements for the developers of NCW is to achieve 

communications interoperability within a multinational coalition. Interoperability is 

achieved with digital datalinks, which are the platforms used by modern military forces in 

order to exchange information with each other. If interoperability is effectively applied, 

digital datalinks represent a significant tool in implementing NCW theory. 

Link-16 is a widely used digital datalink system which uses the Joint Tactical 

Information Distribution System (JTIDS) as its communications component. JTIDS 

employs several techniques in order to improve performance. The error detection and 

correction (EDAC) mechanism used is (31, 15) Reed-Solomon (RS) encoding. The (31, 

15) notation implies that 16 redundant symbols are added for every 15 symbols of actual 

data, thus providing a block of 31 symbols. The signal is modulated at baseband using an 

M-ary modulation technique called cyclic code-shift keying (CCSK) that is compatible 

with direct sequence spread spectrum. CCSK modulates 5-bit interleaved symbols 

previously produced by the RS encoding into 32-chip pseudo-random sequences. Finally, 

these sequences are transmitted using minimum-shift keying (MSK) modulation. 

This thesis presents the analysis of a JTIDS/Link-16 compatible waveform, 32-

ary orthogonal signaling with (31, 15) RS coding, detected noncoherently. Sequential 

diversity of two, consistent with the double-pulse structure of JTIDS, is considered.  The 

type of side information considered is perfect side information (PSI), which is not 

practical but gives an idea of the best performance that can be obtained when pulse-noise 

interference (PNI) is present.   



 xiv

Initially, this thesis investigates the performance of the JTIDS compatible 

waveform with a diversity of two detected noncoherently in an additive white Gaussian 

noise (AWGN) environment. A comparison conducted between the double-pulse 

structure waveform and the single-pulse structure waveform shows that the double-pulse 

structure outperforms the single-pulse structure, thus, verifying that diversity is an 

effective technique employed in noisy environments. 

The effects of AWGN and PNI on the performance of the JTIDS compatible 

waveform for noncoherent demodulation are also examined. The numerical results show 

that for large values of ρ  ( )0.5 1ρ≤ ≤ , where ρ is the fraction of time the PNI is on, the 

required signal-to-pulsed-noise interference ratio ( /b IE N ) increases as ρ  decreases for a 

fixed bP .  Moreover, it was observed that the absolute performance of the receiver for 

various values of ρ  degrades in an analogous manner as values of signal-to-noise-ratio 

( /b oE N ) decreases.  

Finally, this thesis examined the potential gains from PSI in an AWGN and PNI 

environment. It was shown that the existence of PSI is beneficial to tactical datalink users 

since PSI reduces the effect of PNI. In all cases investigated, when PSI was available 

there was an improvement in the performance of the receiver compared to when PSI was 

not available. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 xv

ACKNOWLEDGMENTS 

I would like to express my gratitude and appreciation to Professor Clark 

Robertson for his invaluable service as thesis advisor. His scientific expertise and patient 

counsel have contributed to the successful completion of this thesis and to my intellectual 

development. I would also like to thank Professor Frank Kragh for his time spent serving 

as the second reader of this thesis. 

I would also like to thank the Hellenic Navy for giving me the opportunity to have 

an enlightening educational experience at the Naval Postgraduate School. 

I dedicate this work to my father, Panagiotis Kagioglidis. His concrete moral 

values and ideals, along with his scientific background, have always been an inspiration 

to me.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 xvi

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 THIS PAGE INTENTIONALLY LEFT BLANK 
 



 1 

I. INTRODUCTION 

A. OVERVIEW 

Network-centric warfare (NCW) is an emerging theory of war applied in modern 

military operations in order to improve their effectiveness. To achieve this, NCW applies 

information age concepts to speed communications and increase situational awareness 

through networking [1]. As a result, NCW transforms the efficient flow of information 

into combat power by linking allied forces across the battlefield, thus enabling them to 

employ more effective decision making during military operations [2].  

One of the most demanding requirements for the developers of NCW is to achieve 

interoperability among the communications systems of allied militaries. According to the 

NATO Glossary of Terms and definitions, interoperability can be defined as the ability of 

systems to provide services to and accept services from other systems and to use the 

services so exchanged to enable them to operate effectively together [3]. Digital datalinks 

are the platforms used by modern military forces in order to exchange information with 

each other. If interoperability is effectively applied, digital datalinks represent a 

significant tool in implementing NCW theory. 

For many years several NATO forces have used tactical data links, such as Link-

11 and Link-4A. Link-16 was introduced later in order to improve certain technical and 

operational capabilities of the already existing tactical data links [4]. Link-16 is a 

Communications, Navigation and Identification (CNI) system intended to exchange 

surveillance and Command and Control (C2) information among various C2 platforms 

and weapons platforms in order to enhance the varied missions of the multiple services. It 

provides multiple access, high capacity, jam resistant, digital data and secure voice CNI 

information to a variety of platforms [5].  

The Joint Tactical Information Distribution System (JTIDS) is the 

communications component of JTIDS/Link-16. From the definition used in [5] the 

“JTIDS is a joint-service system which provides a reliable, secure, jam resistant, high-

capacity, CNI capability through the use of direct-sequence, spread-spectrum, frequency-
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hopping, and error detection and correction techniques.” The error detection and 

correction (EDAC) mechanism employs (31, 15) Reed-Solomon (RS) encoding. The (31, 

15) notation means that 16 error detection and correction symbols are added for every 15 

symbols of actual data, thus providing a message of 31 symbols. The signal is modulated 

at baseband by using an M-ary modulation technique called cyclic code shift keying 

(CCSK) that is compatible with direct sequence spread spectrum. CCSK modulates the 5-

bit interleaved symbols previously produced by the RS encoding technique into 32-chip 

pseudo-random sequences. Finally, these sequences are transmitted using minimum-shift 

keying (MSK) modulation [4]. 

B. LITERATURE REVIEW 

Since 1991, military specialists have striven to speed up the transmission and the 

reception of digital information. This has translated into an increase in demand for 

throughput, which is the transmission capacity for any given channel on a network [1]. A 

limited throughput results in an overall low data rate. The JTIDS/Link-16 operates in the 

L-band (from 969 MHz to 1206 MHz). In comparison with earlier tactical datalinks, such 

as Link-11 and Link-4A, JTIDS/Link-16 has a higher throughput [4], but limited data 

throughput in general is its most significant drawback. This stems from the fact that a 

frequency-hopped spread spectrum signal, which is used to increase jam resistance, 

occupies only a small fraction of the available bandwidth at any time. As a result, there is 

a significant reduction in throughput relative to the overall system bandwidth. Moreover, 

the transmitted messages also include, in addition to the data payload, an additional 

number of overhead bits. Thus, the amount of actual data transmitted is even more 

reduced [6]. 

There are several programs in progress that intend to introduce some 

enhancements in order to overcome the weakness of JTIDS/Link-16, as mentioned above. 

Among them is a program called Enhanced Throughput, which takes advantage of 

modern channel encoding techniques in order to increase JTIDS’s throughput. Specialists 

speculate that the improved throughput will be a maximum of 1.1 Mbps, which is almost 

ten times higher than the currently available throughput [7]. However, it is doubtful that 
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this maximum rate is actually going to be achieved in practice. This is because the 

maximum speeds for wireless communications are usually achieved when signals are 

transmitted between immobile stations that are close to each other and in an RF 

environment clear from interference. Since JTIDS is usually employed by moving 

platforms, often operating at a long distance from each other, and in an environment with 

possible interference, the actual data rates are expected to be lower than the estimated 

maximum rate [7]. 

It should be noted that very-high-speed commercial wireless technologies are 

continuously introduced in the market. Several NCW experts envision the adaptation of 

these new technologies by military communication systems. A prime example is the 

effort to incorporate IP-based waveforms into tactical datalinks. These new waveforms 

present wideband networking features, thus providing a seamless capacity of data 

transmission [8]. An IP-based Wideband Networking Waveform (WNW) has already 

been developed within the Joint Tactical Radio System (JTRS). However, evaluation 

tests conducted by the United States Air Force (USAF) and the United States Navy 

aviation community have shown that the WNW is incompatible with fighter combat [8].  

There continues to be an active search for an IP-based waveform able to meet 

military communication needs. All efforts, however, are still in an experimental level or 

in a demonstration mode. For example, the Tactical Targeting Networking Technology 

(TTNT) developed under the auspices of the U.S. Defense Advanced Research Projects 

Agency has introduced a system that incorporates an IP-based waveform able to provide 

a 2Mbit/s throughput. The key advantage of this system is that data can be transmitted 

with much lower latency periods compared to the WNW. The major drawbacks of TTNT, 

however, are its high cost and the absence of interoperability with systems used by 

coalition partners (Link-16 is still used by the majority of NATO allies) [8]. Another 

example is a system called Flexible Access Secure Transfer (FAST). FAST makes use of 

sophisticated software able to transform the Link-16 waveform into an IP-based signal 

which is wideband but still compatible with the existing terminals used by all Link-16 

users. The software used by FAST eliminates the pre-arranged time slots used previously  
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in Link-16 and introduces instead a variable and adaptive data rate which enhances the 

overall throughput, thus allowing a transmission rate of 1.1 Mbit/s. The FAST program is 

still in a test and demonstration mode [8]. 

Since the incorporation of new wireless technologies in military applications is 

still a vision that remains to become reality sometime in the future, present efforts to 

improve JTIDS/Link-16 are timely and cost effective. Accordingly, there are several 

studies which strive to somehow modify either the existing JTIDS/Link-16 waveform or 

the EDAC mechanism in order to improve the overall throughput and reliability. For 

example, [9] presents a comparison of the performance of a CCSK waveform with an 

orthogonal waveform, and [10] provides an analysis of different forward error correction 

(FEC) techniques for high-rate direct sequence spread spectrum. An analytical 

approximation for the probability of symbol error of CCSK is derived in [11], but 

according to [12] the performance obtained is optimistic by about 2 dB. 

C. THESIS OBJECTIVE 

This thesis examines an alternative waveform, which utilizes (31, 15) RS 

encoding as in the current JTIDS. The coded symbols are then transmitted on the in-

phase (I) and quadrature (Q) component of the carrier using 32-ary orthogonal signaling 

with 32 chip baseband waveforms such as Walsh functions and detected noncoherently. 

For noncoherent detection, only one five bit symbol is transmitted on both the I and Q 

component of the carrier, so the data throughput for noncoherent detection is ½ that of 

coherent detection. A sequential diversity of two, consistent with the double-pulse 

structure of JTIDS, is also assumed, and performance will be examined both for the case 

of linear, soft diversity combining but also for soft diversity combining with side 

information.  The type of side information to be considered is perfect side information. 

To the best of the author’s knowledge, the analysis of a compatible waveform obtained 

by replacing CCSK with 32-ary orthogonal signal detected noncoherently and taking into 

account the effect of pulsed-noise interference (PNI) on this waveform and a sequential 

diversity of two has not been previously investigated. 
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D. THESIS OUTLINE 

This thesis is organized as follows. The first chapter is the introduction and 

explains why the topic of this thesis is important and provides a review of the relevant 

literature. Chapter II provides a series of basic concepts that the reader needs to have in 

mind in order to be able to understand the analysis of the compatible JTIDS waveform 

which follows in the next chapters. Chapter III presents the results of the performance 

analysis of the compatible JTIDS waveform with noncoherent detection. The analysis 

takes into account a purely additive white Gaussian noise (AWGN) environment. In 

Chapter IV, the analysis is performed for an AWGN environment with the addition of 

PNI. Chapter V examines the performance of the compatible JTIDS waveform in an 

AWGN and PNI environment with perfect side information (PSI). Chapter VI contains a 

comparison of the performance of 32-ary orthogonal signaling with (31, 15) RS encoding 

noncoherently detected with the original JTIDS waveform both for AWGN only, as well 

as both AWGN and PNI. Finally, Chapter VII presents the conclusions based on the 

results derived from the analysis in the previous chapters. 
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 7 

II. BACKGROUND 

This chapter provides a series of basic concepts that the reader needs to have in 

mind in order to be able to understand the analysis of the compatible JTIDS waveform, 

which follows in the next chapters. 

A. M-ARY ORTHOGONAL SIGNALS 

When M-ary signaling is used, the processor of a digital communication system 

accepts k coded information bits at a time. In the process, the system’s modulator 

produces one of 2kM =  distinct waveforms ( ),  1, 2,...,ms t m M=  in order to represent 

symbol m . For 1k > , M-ary signaling can be considered a waveform coding procedure 

[13]. By definition, orthogonal signals are a set of signals ( ),  1, 2,...,ms t m M=  with equal 

energy such that [14] 

                              * ,   
0,    ( ),  ( ) ( ) ( )   {m n m n
E m n

m ns t s t s t s t dt
∞

−∞

=
≠= =∫     ,                              (2.1) 

 
where  denotes the inner product of the signals ( ) and ( )m ns t s t , and E  is the signal 

energy when m n= . For orthogonal signaling, error performance is improved (the 

required signal-to-noise ratio ( /b oE N ) is reduced for a fixed bP ) as k increases at the 

expense of bandwidth [13]. An M-ary orthogonal signal can be received either coherently 

or noncoherently. In this thesis, only noncoherent detection is considered. 

In an AWGN environment, the waveform of an M-ary orthogonal signal can be 

represented by 

                                         ( ) 2 ( ) cos(2 ) ( ),    0T c m c i ss t A c t f t n t t Tπ θ= + + ≤ ≤              (2.2) 

where ( )n t  is AWGN noise with power spectral density (PSD) 0 / 2N , the phase 

reference iθ  is unknown for noncoherent detection and ( )mc t , 1, 2,...,m M= , is an 

orthogonal, baseband waveform that represents symbol m . By design, the M  baseband 

waveforms are orthogonal over periods of sT  [15] 
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0

 for, 
0  for, ( ) ( ) {sT

m n
sT m n

m nc t c t dt =
≠=∫    .                                     (2.3)   

  A block diagram of a noncoherent M-ary orthogonal baseband waveform 

demodulator is shown in Figure 1 [15]. 

  In the presence of AWGN, the integrator outputs ( )m Sx iT  for each branch of the 

receiver can be represented as independent Gaussian random variables 

, , 1,2,...,
i qm mX X m M= . The expected value of the in-phase integrator outputs are given 

by [15] 

                           
( ) ( )

0

2 cos ,
0 ,

2 2 ( ) ( )cos 2 cos 2
s

i

T
c

m m n c i c
s

c iA for n m
for n m

AX c t c t f t f t dt
T

θ =
≠

= π + θ π

⎧= ⎨
⎩

∫
,                      (2.4) 

and the expected value of the quadrature integrator outputs by 

                          
( ) ( )

0

2 sin ,
0 ,

2 2 ( ) ( ) cos 2 cos 2
s

q

T
c

m m n c i c
s

c iA for n m
for n m

AX c t c t f t f t dt
T

− θ =
≠

= π + θ π

⎧= ⎨
⎩

∫
.                      (2.5) 

The noise power at the integrator outputs are given by the variances of 

 and , 1,2,...,
i qm mX X m M= , and the variances are expressed as [15] 

                              1 2

1 2

2 2 2

2 2 2 2
0

...

... /
Mi i i

q Mqq

X X X

X X X sN T

σ σ σ

σ σ σ σ

= = =

= = = = = =
.                          (2.6) 

The conditional probability density functions (pdfs) for the random variables mV  

that represent the output of the thm  branch when the signal corresponding to symbol m  is 

transmitted is given by the noncentral chi-squared probability density function with two 

degrees of freedom [15]: 
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( )2

2 2 2

2 21( | ) exp ( )
2 2m

m c c m
V m o m

v A A v
f v m I u v

σ σ σ

⎡ ⎤ ⎛ ⎞− +
⎢ ⎥= ⎜ ⎟⎜ ⎟⎢ ⎥ ⎝ ⎠⎣ ⎦

               (2.7) 

where ( )0I •  is the modified Bessel function of the first kind and order zero and ( )u v is 

the unit step function.   

The conditional pdfs for the random variables nV  that represent the outputs of 

each branch when the signal frequency mf  is transmitted ( m n≠ ) are given by the 

central chi-squared pdf with two degrees of freedom [15]:  

                                                    2 2

1( | ) exp ( )
2 2n

n
V n n

vf v m u v
σ σ

−⎡ ⎤= ⎢ ⎥⎣ ⎦
                             (2.8) 

since ( )0 0 1I = . 

 

Figure 1. Block diagram of a noncoherent M-ary orthogonal baseband waveform 
demodulator [From: [15]). 
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B. PERFORMANCE OF M-ARY ORTHOGONAL SIGNALING IN AWGN 

In the presence of AWGN with power spectral density 0 / 2N , the probability of 

channel symbol error for noncoherent M-ary orthogonal signaling is [15] 

                                 ( )
( )

11

1

11
exp

1 1

nM
s

s
n o

M nEp
nn n N

+−

=

⎡ ⎤−− ⎛ ⎞ −
= ⎢ ⎥⎜ ⎟+ +⎝ ⎠ ⎣ ⎦
∑                             (2.9) 

where sE is the average energy per channel symbol, 2
s c sE A T= , where 2

cA  is the average 

received signal power, and sT  is the symbol duration.  

Alternatively, the probability of channel symbol error can be evaluated by 

performing the union bound approach [13]: 

 
0

1exp
2 2s

M Esp
N

⎛ ⎞− −
≤ ⎜ ⎟

⎝ ⎠
            (2.10) 

C. PERFORMANCE IN BOTH AWGN AND PULSED-NOISE 
INTERFERENCE  

In recent years, there has been increasing activity in the area of pulsed intentional 

electromagnetic interference (IEMI) also known as “EM Terrorism.” By definition, IEMI 

is the “Intentional malicious generation of electromagnetic energy introducing noise or 

signals into electric and electronic systems, thus disrupting, confusing or damaging these 

systems for terrorist or criminal purposes [16].” IEMI is most effective upon data 

communications systems since they are usually designed upon expectations of a 

wideband Gaussian noise environment, rather than an intense pulsed interfering signal 

[17]. 

It is known that an intentional interferer (jammer) that targets a frequency-

hopping system will achieve maximum interference (highest average probability of error) 

by focusing its power so as to jam a fraction of the hops unless the jammer is so powerful 

that it can spread its power across the whole bandwidth, thus causing errors for all hops 

[18]. A pulse-noise jammer transmits pulses of bandlimited Gaussian noise having a high 

peak power [13]. The general consideration of this thesis is the degree of impact that a 
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pulse-noise jammer has on a communication system. More specifically, we will examine 

the performance of a compatible JTIDS/Link-16 waveform in a AWGN and pulsed-noise 

interference (PNI) environment. 

In an AWGN environment, the noise signal that reaches the receiver is assumed to 

be uniformly spread across the spectrum and time-independent. These parameters are not 

always valid in the case of PNI. In this thesis, the AWGN and PNI are assumed to be 

statistically independent, and the PNI is modeled as Gaussian noise [14].In the presence 

of both AWGN and PNI, the total noise power at the receiver integrator outputs is given 

by [19] 

                                                           2 2 2
X WG Iσ = σ + σ                                                    (2.11) 

where 2 /WG o sN Tσ = , 2 /I I sN Tσ ρ= , IN  is the PSD of barrage noise interference and ρ  

is a fraction of time that an interferer is switched on. In the case of 1ρ = , the jammer is 

continuously on and is referred to as barrage noise interference. 

When PNI is present, the average probability of symbol error is given by the 

expression 

         Pr(Interferer isON) (AWGN+PNI) Pr(Interferer isOFF) (AWGN)s s sP p p= +      (2.12) 

where we assume that a symbol is either completely free of PNI or the entire symbol is 

affected by PNI [19]. Since Pr(Interferer is ON)=ρ , 

                                 ( ) ( ) ( )AWGN PNI 1 AWGNs s sP p pρ ρ= + + −  ,                       (2.13) 

where ( )sp x  represent the probability of symbol error for condition as it is defined by x . 

 

D. PERFORMANCE WITH DIVERSITY 

Designers of anti-jam communication systems aim at forcing a jammer to expend 

its resources over a wide-frequency band for a maximum time and from a diversity of 

sites. The most commonly used design options are diversity techniques [13]. Moreover, 

diversity techniques are based on the assumption that receivers make errors when the 

channel attenuation is large, i.e., when the channel is fading. Accordingly, if we send to 



 12 

the receiver several replicas of the same information signal transmitted over fading 

channels independent of each other,  the probability that all the replica signals will fade at 

the same time is significantly reduced [14].  

One of the prevalent methods used to produce these replicas employs frequency 

diversity by the use of frequency-hopping spread-spectrum techniques [13]. This means 

that the same information signal is transmitted on L carriers, where the separation 

between successive carriers equals or exceeds the coherence bandwidth ( )c
fΔ of the 

channel. The separation of frequency by ( )c
fΔ is a form of block-interleaving the bits in a 

repetition code in order to make these bits statistically independent and, thus, obtain 

independent errors [14]. 

The Link-16 message data can be transmitted with either a single-pulse structure 

(without diversity) or a double-pulse structure. The latter increases the anti-jam capability 

of the link since it provides a diversity of L = 2. When the double-pulse structure is used, 

JTIDS is a hybrid direct sequence/fast-frequency hopping (DS/FFH) spread spectrum 

system with sequential diversity L = 2 since each symbol is transmitted twice on two 

different carrier frequencies [20]. 

For a system with diversity of order L , where each diversity signal is received 

independently, the probability that i  of L  receptions are affected by PNI can be 

represented as [19] 

Pr(     ) (1 )i L iL
i of L pulses jammed

i
ρ ρ −⎛ ⎞

= −⎜ ⎟
⎝ ⎠

  (2.14) 

where there are 
L
i

⎛ ⎞
⎜ ⎟
⎝ ⎠

 different ways that i  of L  receptions can be jammed and ρ  is the 

fraction of time when the channel if affected by PNI. The probability of symbol error for 

a system with diversity of L is 

0
[Pr(     ) ( )]

L

s s
i

P i of L signals jammed p i
=

=∑      (2.15) 
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where ( )sp i is the conditional probability of channel symbol error in the event that i  of 

L  diversity receptions are affected by PNI. Substituting (2.14) into (2.15), we get 

 
                                    (2.16) 

 

E. FORWARD ERROR CORRECTION CODING   

Designers of digital communications and storage systems take under serious 

consideration the integrity of the received data. When EDAC strategies are required, 

designers often use high reliability techniques such as forward error correction (FEC) 

coding. The most significant advantage of FEC coding is that the digital system that 

employs it can detect and reconstruct an erroneous transmitted message at the receiver 

without requiring retransmissions [21]. 

Modern coding theory has resulted in several block codes for FEC, including the 

Reed-Solomon (RS) codes. RS codes have the ability to detect and correct both random 

errors (typically caused by additive noise), and burst errors (errors that occur sequentially 

in time and as groups and typically caused by media defects in digital storage systems). 

Moreover, RS codes are easily and economically applied to both high and low data rate 

systems, which make them popular with designers [21]. 

The FEC used by JTIDS/Link-16 is (31, 15) RS coding, a linear, nonbinary code. 

In order to be consistent with the original JTIDS/Link-16 waveform, the compatible 

JTIDS/Link-16 waveform, examined by this thesis, also employs (31, 15) RS coding for 

error detection and correction. For nonbinary codes, instead of bits symbols are 

generated. Each of these symbols represents m bits and the number of different symbols 

required are 2mM = . An ( , )n k  RS encoder, takes k information symbols ( m k  

information bits) and generates n coded symbols ( m n  coded bits) [22]. 

The probability of decoder, or block, error for a t-symbol error correcting, 

nonbinary block code with maximum likelihood decoding is upper bounded by [22] 

0
(1 ) ( )

L
i L i

s s
i

L
P p i

i
ρ ρ −

=

⎡ ⎤⎛ ⎞
= −⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦
∑
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                                                   ( )
1

1
n

n ii
E s s

i t

P p p
n
i

−

= +

⎛ ⎞
≤ −⎜ ⎟

⎝ ⎠
∑                                          (2.17) 

or 

                                                ( )
0

1 1
t

n ii
E s s

i

P p p
n
i

−

=

⎛ ⎞
≤ − −⎜ ⎟

⎝ ⎠
∑                                         (2.18) 

where equality holds for either a perfect code or a bounded distance decoder, and sp  is 

the probability of coded, or channel, symbol error. 

For M-ary orthogonal modulation with 2mM =  and RS codes with hard decision 

decoding employed, we obtain the probability of information bit error as [22] 

                                                  ( )2
1

1 1
2

n
n ii

b s s
i t

nP i p p
n

n
i

−

= +

⎛ ⎞+
≈ −⎜ ⎟

⎝ ⎠
∑ .                                (2.19) 

 

F.  PERFECT-SIDE INFORMATION 

When a communications system is under jamming attack, it is very useful for the 

receiver to have some type of side information. One type of side information is when the 

receiver knows the jammer state, i.e., when the jammer is on or off.  This knowledge can 

be acquired from channel measurements of noise power levels in adjacent frequency 

bands [14]. Moreover, perfect side information (PSI) is the certain knowledge of which 

specific hops are jammed and which are not [20]. 

For a system with a diversity of L, where the diversity receptions are received 

independently, PSI can be considered as a means to reduce the effect of PNI. For a 

diversity of two, when both received symbols in the repetitive pulses are unaffected by 

PNI, they are combined and demodulated as usual. If either of the diversity receptions is 

affected by PNI, the receiver discards the PNI-affected symbol and makes a decision 

based on the remaining diversity reception affected only by AWGN. When both diversity 

receptions are affected by PNI, the receiver combines the two receptions and makes a 

decision. PSI requires at least a diversity of two and can improve system performance in 

a PNI environment where 1ρ <  [23]. 
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G. CHAPTER SUMMARY 

The first part of this chapter offered an introduction to M-ary orthogonal signals. 

It then addressed the necessary concepts required to examine the performance of a 

compatible JTIDS/Link-16 waveform which consists of 32-ary orthogonal signaling with 

(31, 15) RS coding, where the detection will be performed noncoherently. Other 

considerations, such as the impact of jamming in the form of pulsed-noise interference, 

along with an anti-jamming technique, namely diversity, were addressed as well. In the 

later part of this chapter, the concepts of forward error correction coding and perfect side 

information were also introduced. In the next chapter, the performance of a compatible 

JTIDS waveform that utilizes (31, 15) RS coding with M-ary orthogonal modulation 

transmitted over a channel with only AWGN is examined. 
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III. PERFORMANCE ANALYSIS OF NONCOHERENT 32-ARY 
ORTHOGONAL SIGNALING WITH (31, 15) RS ENCODING 

IN AN AWGN ENVIRONMENT 

A. PERFORMANCE IN AWGN 

In this chapter, we examine the performance of a JTIDS compatible 32-ary 

orthogonal signaling with (31, 15) RS encoding in an AWGN environment by analyzing 

the bit error versus the signal-to-noise ratio. As mentioned in the previous chapter, the 

Link-16 message data can be transmitted with either a single-pulse structure or a double-

pulse structure. The waveform under examination belongs to the second category since it 

employs a diversity of two. We are going to perform a comparison between the 

probability of bit error of the single-pulse structure Link-16 waveform (no diversity) and 

the double-pulse structure waveform in order to determine if there are any improvements. 

The probability of channel symbol error for noncoherent M-ary orthogonal 

signaling in an AWGN environment is provided by (2.9). In terms of average bit energy, 

it can be written as 

                               (3.1) 

 

since s bE mE= , where m is the number of bits per symbol.  

When FEC coding is used, the probability of channel symbol error with no 

diversity is given by [12] 

                                        
( )

( )

11
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11
exp

1 1
c

nM
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s
n o

nmEM
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nn n N

+−

=

−⎡ ⎤−− ⎛ ⎞
= ⎢ ⎥⎜ ⎟+ +⎝ ⎠ ⎣ ⎦
∑                                (3.2) 

or 

                                        ( )
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n o
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=
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∑                                (3.3) 
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where 
cb bE rE=  is the average energy per coded bit, and /r k n=  is the code rate, 

indicating there are k information symbols per n coded symbols. 

When the compatible noncoherent M-ary orthogonal signaling with a diversity of 

two is employed, we need to define the new channel symbol error. Since the double 

structure is used, JTIDS functions as a hybrid DS/FFH spread spectrum system. The 

performance of FFH M-ary orthogonal signaling with 1L >  and soft decision 

demodulation is the same as that for a noncoherent M-ary orthogonal signaling system 

with L-fold time diversity and soft decision demodulation. A block diagram of a 

noncoherent FFH M-ary frequency-shift keyed (MFSK) detector with soft decision 

demodulation is shown in Figure 2. Mathematically, the performance of this receiver is 

identical to that of an M-ary orthogonal baseband receiver with linear, soft decision 

combining. 

 

Figure 2. Noncoherent FFH/MFSK receiver with linear, soft decision combining.  
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The analog outputs, 1 2,  ,...,  
k k kMV V V , of each square-law detector for each diversity 

reception are added and they give the decision statistics 1 2,  ,...,  MV V V . The latter are 

compared with each other in order to decide whether the signal corresponding to a 

particular branch is present or not. For L  diversity receptions the conditional pdfs for the 

random variables 1 2 and V V  are given by (symbol 1 is assumed to be transmitted) [24] 

 

          
( )

( )( )
( ) ( )

1

21 /2
1 11

1 1 12 21 /22 2

2 2
( |1) exp

22 2

L
c c

V LL

c

v LA A Lvvf v I u v
LA σ σσ

−

−−

⎡ ⎤ ⎛ ⎞− +
⎢ ⎥= ⎜ ⎟⎜ ⎟⎢ ⎥ ⎝ ⎠⎣ ⎦

         (3.4) 

 

where ( )1LI − •  is the modified Bessel function of the first kind and order 1L − , 

 

and                           
( ) ( )

2

1
2 2

2 22 2( |1) exp
2 1 ! 2

L

V
v vf v u v

Lσ σ

− −⎡ ⎤= ⎢ ⎥− ⎣ ⎦
 . (3.5)  

 

We use an indirect approach where we obtain the probability of not making a 

symbol error and subtract that result from one [15] to get 

                       ( ) ( )1

1 2

1

1 2 2 10 0
1 1 |1 |1

M

s c V Vp p f v f v dv dv
υ −∞ ⎡ ⎤= − = − ⎢ ⎥⎣ ⎦∫ ∫                          (3.6) 

 

Substituting (3.4) and (3.5) into (3.6), we obtain an expression for the probability 

of channel symbol error with a diversity of two as 
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1
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1 11 11 1  !exp
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wp qM
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s w q
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M p qrmLE LEpp q rm
p q q wp N w Np
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∑ ∑ ∑       (3.7) 

 
 

or, alternatively, 
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M p qrmE Epp q rm
p q q wp N w Np
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∑ ∑ ∑ .          (3.8) 
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since b cE LE= , where bE  is the overall average energy per information bit and is related 

to the average signal energy per diversity reception cE  by a factor of L. 

For 2,  5,  1,M m L= = =  and / 15 / 31r k n= =  the expressions (3.3) and (3.8) are 

simplified to, for no diversity, 
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∑                                  (3.9) 

and, for a diversity of two ( )2L = , 
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∑ ∑ ∑ .      (3.10) 

 

As mentioned earlier, for RS codes and M-ary orthogonal modulation with 

2mM =  and hard decision decoding, we obtain the probability of information bit error 

using (2.19), repeated here for convenience: 

                                                ( )2
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n ii

b s s
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nP i p p
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B. NUMERICAL RESULTS 

The performance of noncoherent 32-ary orthogonal signaling with (31, 15) RS 

coding for both the original single structure waveform with no diversity and the double-

pulse structure waveform, equivalent to a diversity of two, is shown in Figure 3. 
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Figure 3. Performance of noncoherent 32-ary orthogonal signaling with (31, 15) RS 
encoding for both the single-pulse and the double-pulse structure in AWGN. 

At 510bP −= , the  required /b oE N  for the double-pulse structure is about 3.6 dB, 

while the /b oE N  required for the single-pulse structure is about 5.9 dB. Thus, the 

compatible waveform which employs a diversity of two outperforms the single-pulse 

waveform by 2.3 dB at 510bP −=  in AWGN. 
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C. CHAPTER SUMMARY 

In this chapter, the performance of the compatible JTIDS waveform with a 

diversity of two detected noncoherently in an AWGN environment was investigated. In 

order to examine the potential improvements of the new waveform, a comparison was 

conducted between the double-pulse structure waveform and the single-pulse structure 

waveform. The key in this analysis was to derive an expression for the probability of 

channel symbol error of the compatible waveform. The comparison, as expected, showed 

that the double-pulse structure outperforms the single-pulse structure, thus, verifying that 

diversity is an effective technique employed in noisy environments. In the next chapter, 

the performance of the compatible JTIDS waveform for noncoherent demodulation in 

both AWGN and PNI are examined. 
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IV. PERFORMANCE ANALYSIS OF NONCOHERENT 32-ARY 
ORTHOGONAL SIGNALING WITH (31, 15) RS ENCODING 

IN AN AWGN AND PULSED-NOISE INTERFERENCE 
ENVIRONMENT AND A DIVERSITY OF TWO 

A. PERFORMANCE IN AWGN AND PNI 

In this chapter, we examine the performance of the receiver in the presence of 

PNI and AWGN. For practical reasons, we model PNI as Gaussian noise that is turned on 

and off periodically. If ρ represents the fraction of time that the PNI is turned on, then 

(1 )ρ− represents the fraction of time that the PNI is turned off where 0 1ρ< ≤ . In 

this kind of noisy environment, received symbols are affected by two different levels of 

noise power since some of the symbols are affected only by AWGN and the rest by both 

AWGN and PNI. If the one-sided PSD of the AWGN is oN  and the one-sided PSD of 

barrage noise interference is IN , then /IN ρ   is the PSD of the PNI since we assume 

that average interference power is independent of ρ . 

For a channel with a diversity of L  in an environment of both AWGN and PNI, 

the probability of channel error is given by (2.16). Accordingly, for a diversity of two, we 

have 
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where ( )0sp  is the conditional probability of channel symbol error when PNI is not 

present in either diversity reception and is expressed as 
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The conditional probability of channel symbol error ( )2sp  when both diversity 

receptions suffer PNI is obtained as follows. The random variables 1 2 and V V  are 

obtained from (3.4) and (3.5), respectively, by replacing 2σ  with 2
Tσ  to get 
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and oN and IN  are the one-sided PSDs of AWGN and PNI, respectively.  

We use the indirect method, as in the previous chapter, in order to derive the 

conditional probability ( )2sp , and for 2L =  we get: 
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The conditional probability of channel symbol error ( )1sp  when only one of the 

diversity receptions suffers PNI is obtained as follows. The probability density function 
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of the decision statistic 1V  for i  hops experiencing pulsed noise interference (symbol 1 is 

assumed to be transmitted) is given by [25] 
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.      (4.7)    

For 1 and 2i L= = , we get: 

( ) ( ) ( )
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c c
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.         (4.8) 

Let us define the components of this convolution as: 

 

                             (4.9) 

and  
      

                              
( ) ( )

1,

12
1 12 2 2
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2 2b

c
V c o

o o o

A v
f v v A I

σ σ σ

⎛ ⎞⎡ ⎤
= − + ⎜ ⎟⎢ ⎥ ⎜ ⎟⎣ ⎦ ⎝ ⎠      .                         (4.10)    

                                                            
 

Evaluating (4.8) in the decision statistic domain requires the use of the definition 

of convolution, that is  

  

                               fv1
v1 |1( )= fv1,a

v1 |1( )× fv1,b
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0

v1∫ dt
  (4.11) 

 

 

where t is a dummy variable. The analytic evaluation of this integral is not possible to the 

best of the authors’ knowledge. 

Transforming this probability density function to the Laplace domain yields the 

Laplace transform of the probability density function for decision statistic 1V : 

( ) ( )
1.

12
1 12 2 2

1 1|1 exp
2 2a

c
V c o

T T T

A v
f v v A I

σ σ σ

⎛ ⎞⎡ ⎤
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                ( )
1
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for which no known closed form solution exists [25]. 

In the same manner as in the case of 1V , the probability density function of 

decision statistic 2V  for one hop experiencing pulsed noise interference is given by 

                                   ( )
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Let us define the components of this convolution as: 
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2
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and 
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                                        (4.15) 

 

Transforming these probability density functions to the Laplace domain, we get 

the Laplace transform of the probability density function for decision statistic 2V : 

 

 .                  (4.16) 

 

 

The inverse Laplace transform of (4.16) is: 

 

              (4.17) 

 

which is the result we would obtain by using the definition of convolution for the 

evaluation of (4.13). Thus, 
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where u is a dummy variable, eliminated by the inverse Laplace transform evaluation (an 

important simplification in the process of our analysis). 

In order to derive an expression for the probability of symbol error, once again we 

use the indirect approach, repeated here for convenience: 
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Substituting (4.11) and (4.17) into (4.19), it yields 
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The integral over 2v  can be evaluated, and with a combination of substitutions of 

variables we eliminate the dummy variable t and reach an expression suitable for 

evaluating the probability of symbol error (we make use of the expressions 

/  and /I b I b b oE N E Nγ γ= =  for the sake of space): 
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     .   (4.21) 

 

B. NUMERICAL RESULTS 

Substituting the conditional probabilities of channel symbol errors for number of 

jammed diversity receptions 0,  1, 2i =  given by (4.2), (4.6) and (4.21) into (4.1), we 

derive the expression for the probability of information bit error. The performance for 

different values of ρ with / 11.3 dBb oE N = is shown in Figure 4.  
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Figure 4.  Performance of 32-ary orthogonal signaling with (31, 15) RS encoding for 
different values of ρ  in both AWGN and PNI with / 11.3 dBb oE N = . 

We observe that the value of /b IE N  increases as ρ  decreases, at least for 

comparatively large values of ρ . For example, 1ρ =  gives / 8.4 dBb IE N = , compared 

to 0.7ρ = , which gives / 10.1 dBb IE N = . It can also be seen that at 510bP −= , varying 

ρ  from 1 to 0.5 does not degrade the receiver performance significantly as compared to 

barrage jamming ( 1ρ = ). The degradation is 1.7 dB and 1.5 dB for 0.7 and 0.5ρ ρ= = , 

respectively. For smaller values of ρ , such as 0.3ρ = , however, the performance of the 

receiver is improved compared to larger values of ρ. At 510bP −= , the performance for 
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0.3ρ =  is equal to the performance of barrage jamming. However, compared to 0.5ρ =  

there is an improvement in performance of about 1.5 dB. 

The performance of the receiver with / 10 dBb oE N = is shown in Figure 5. 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
10

-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

Eb/NI (dB)

P
b

 

 
ρ=1
ρ=0.7
ρ=0.5
ρ=0.3

 

Figure 5.  Performance of 32-ary orthogonal signaling with (31, 15) RS encoding for 
different values of ρ  in both AWGN and PNI with / 10 dBb oE N = . 

We observe that the degradation in performance due to PNI as compared to 

barrage jamming is 2.6 dB at 510bP −= for both 0.7 and 0.5ρ ρ= = . This means an 

increase of about 1.1 dB compared to the previous case. For 0.3ρ = , there is also 

degradation in performance compared to 1ρ =  of about 1.2 dB, which is also worse 
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compared to the performance with / 11.3 dBb oE N = . Moreover, the absolute 

performance for various values of ρ  is worse in the case with / 10 dBb oE N = versus the 

one with / 11.3 dBb oE N = . In numerical terms, this is a degradation of 0.9 dB for 1ρ =  

to about 2.2 dB for 0.3ρ =  at 510bP −= . 

In Figure 6, the performance of the receiver with / 9 dBb oE N = is shown. 
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Figure 6.  Performance of 32-ary orthogonal signaling with (31, 15) RS encoding for 
different values of ρ  in both AWGN and PNI with / 9 dBb oE N = . 
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In this case, the degradation in performance due to PNI as compared to barrage 

jamming is 6.3 dB and 9.4 dB at 510bP −= for 0.7 and 0.5ρ ρ= = , respectively. Not only 

is there a greater degradation compared to the previous cases ( / 11.3 dBb oE N = and 

/ 10 dBb oE N = ) but a rapid degradation in the performance between 

0.7 and 0.5ρ ρ= = , a phenomenon not observed before, can be seen. Moreover, the 

performance of the receiver for 0.3ρ =  is worse compared to barrage jamming by about 

0.9 dB, as opposed to our previously examined cases. Here again, the absolute 

performance for various values of ρ  is worse compared to those obtained for greater 

values of /b oE N . Hence, we can say that with / 9 dBb oE N =  the receiver  reaches a 

critical point at which its performance is more vulnerable to PNI, a fact which is 

confirmed when smaller values of /b oE N  are examined. 

The numerical results for Figures 4, 5 and 6 are summarized in Table 1. 

 

Table 1. Performance of 32-ary orthogonal signaling with (31, 15) RS encoding for 
different values of ρ  in both AWGN and PNI when 510bP −= . 

/ 11.3 dBb oE N =  / 10 dBb oE N =  / 9 dBb oE N =   
 
ρ  

/  dBb IE N  /  dBb IE N  /  dBb IE N  

 
1 

 
8.4 

 
9.3 

 
10.4 

 
0.7 

 
10.1 

 
12 

 
16.9 

 
0.5 

 
9.9 

 
12 

 
19.9 

 
0.3 

 
8.4 

 
10.6 

 
14.9 
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C. CHAPTER SUMMARY 

In this chapter, the effects of AWGN and PNI on the performance of the 

compatible JTIDS waveform for noncoherent demodulation were examined. This 

required the evaluation of the conditional probabilities of channel symbol error for 

0,  1i =  and 2 hops affected by pulsed-noise interference. The analysis was focused on 

deriving a formula for ( )1sp  (conditional probability of channel symbol error for 1i =  

hop experiencing PNI). Computational difficulties in obtaining the probability density 

function of decision statistic 1V , in both the decision statistic and Laplace domains, 

mandated that we use algebraic substitutions in order to transform the given integrals into 

simpler ones. Even so, it is not clear that all computational problems have been solved, 

since the results obtained for 0.3ρ ≤  are not as expected. This will remain an area for 

future research. 

The numerical observations made are summarized as follows. For comparatively 

large values of ρ  ( )0.5 1ρ≤ ≤ , it was shown that the required /b IE N  increases as ρ  

decreases for a fixed bP . A significant degradation was observed in the performance of 

the receiver when  / 9 dBb oE N =  for all values of  1ρ <  (even for 0.3ρ = ). This was a 

hint that for smaller values than / 9 dBb oE N =  the degradation would increase rapidly, a 

fact which was confirmed when such cases were examined. Finally, the absolute 

performance of the receiver for various values of ρ  degrades in an analogous manner as 

values of /b oE N decrease. In the next chapter, the performance of the compatible JTIDS 

waveform for noncoherent demodulation is examined when perfect-side information is 

available in an AWGN and PNI environment. 
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V. PERFORMANCE ANALYSIS OF NONCOHERENT 32-ARY 
ORTHOGONAL SIGNALING WITH (31, 15) RS ENCODING 

IN AN AWGN AND PULSED-NOISE INTERFERENCE 
ENVIRONMENT WITH A DIVERSITY OF TWO AND SIDE 

INFORMATION 

In this chapter, we examine the performance of the receiver in the presence of 

PNI and AWGN with perfect side information (PSI). As mentioned previously, PSI is the 

certain knowledge of which specific hops are jammed and which are not and is a means 

to reduce the effect of PNI. For practical reasons, we model PNI as Gaussian noise that is 

turned on and off periodically. 

A. PERFORMANCE IN AWGN AND PNI WITH PSI 

For a channel with a diversity of two in an environment of both AWGN and PNI 

with PSI, the probability of channel symbol error is given by (2.16). Accordingly, for a 

diversity of two we have 

                     ( ) ( )2 21 (0) 2 1 (1) (2)s s s sP p p pρ ρ ρ ρ= − + − +                              (5.1) 

where ( ) ( ) ( )0 ,  1 ,  2s s sp p p  are the conditional probabilities of channel symbol error for 

i=0,1,2 hops corrupted by PNI, respectively. These are given by 
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p c c
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or 
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( )

1

2
0 0 0

1 11 1( ) 1 1  !exp
1 ! ( / )1

wp qM
p b b

s w q
p q wo o I
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∑ ∑ ∑           (5.3) 

since b cE LE= . 
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Analytically, ( )0sp  is the conditional probability of channel symbol error when 

PNI is not present in either diversity reception and is given by (5.3) for 0i =  and 2L =  

as follows  

             ( )
( )

1

2
0 0 0

1 11 1(0) 1 1  !exp
1 ! 1

wp qM
p b b

s w q
p q wo o

M p qrmE Epp q rm
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∑ ∑ ∑            (5.4) 

 

where the RS code 15 / 31,  5 and 32.r m M= = =  

 For the conditional probability of channel symbol error ( )1sp  when only one of 

the diversity receptions is affected by PNI, the corrupted reception is discarded as a result 

of the advantageous knowledge of PSI. The diversity reception that we take into account 

is affected by AWGN only. In this case, the conditional error probability of channel 

symbol error is given by (5.2) for 1L =  (only one pulse received, since the other is 

discarded) and 0i =  (no pulse affected by PNI) to get    
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or 
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in terms of average bit energy. 

Finally, ( )2sp  is the conditional probability of channel symbol error when both 

diversity receptions are corrupted by PNI and is given by (5.3) for 2 and 2i L= =  as 

follows: 
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 (5.7) 
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or 
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            .                (5.8) 

 
 

Substituting (5.4), (5.6) and (5.8) into (5.1), we derive the probability of channel 

symbol error. 

B. NUMERICAL RESULTS 

1. Performance with PSI when / 15 dBb oE N =  

The performance of 32-ary orthogonal signaling in an AWGN and PNI 

environment with PSI for / 15 dBb oE N = is shown in Figure 7. 
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Figure 7. Performance of 32-ary orthogonal signaling with (31, 15) RS encoding 
with PSI for different values of ρ in both AWGN and PNI with / 15 dBb oE N = . 

It can be seen /b IE N  increases as ρ  decreases for 0.5 1ρ≤ ≤ . For example, 

1ρ =  gives / 7.2 dBb IE N = , compared to 0.7ρ =  which gives / 7.9 dBb IE N = . It can 

also be observed that at 510bP −= , varying ρ  from 1 to 0.5 does not degrade the receiver 

performance significantly as compared to barrage jamming ( 1ρ = ). The degradation is 

0.5 dB and 0.7 dB for 0.7 and 0.5ρ ρ= = , respectively. For smaller values of ρ , such as 

0.3ρ = , however, the performance of the receiver is improved. At 510bP −= , compared to 

barrage jamming there is an improvement of about 1.1 dB. 
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2. Performance with and without PSI when / 10 dBb oE N =  

In Figure 8, the performance of the receiver with and without PSI for 

/ 10 dBb oE N = is presented. 
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Figure 8.  Performance of 32-ary orthogonal signaling with (31, 15) RS encoding 
with and without PSI for different values of ρ in both AWGN and PNI 
with / 10 dBb oE N = . 

The numerical results for Figure 8 are shown in Table 2. 
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Table 2. Performance of 32-ary orthogonal signaling with (31, 15) RS encoding 
with and without PSI for different values of ρ  in both AWGN and PNI, with 

/ 10 dBb oE N =  at 510bP −= .  

5/ 10 dB at 10b o bE N P −= =  ρ 

/  dBb IE N   
PSI 

/  dBb IE N  
No PSI 

 
1 

 
9.3 

 
9.3 

 
0.7 

 
10.3 

 
12 

 
0.5 

 
10.4 

 
12 

 
0.3 

 

 
9 

 
10.6 

 
a. Comparison of Performances with / 15 dBb oE N =  and 

/ 10 dBb oE N =  

We observe that when / 10 dBb oE N =  the degradation in performance due to 

PNI with PSI as compared to barrage jamming is about 1 dB at 510bP −= for 

both 0.7 and 0.5ρ ρ= = . This means an increase of about 0.4 dB compared to the 

performance with / 15 dBb oE N = . The performance for 0.3ρ =  is better compared to the 

performance of barrage jamming (9 dB for 0.3ρ =  versus 9.3 dB for 1ρ = ). However, 

this slight improvement is by far lesser compared to the performance 

with / 15 dBb oE N = . Moreover, the absolute performance for various values of ρ is 

worse in the case with / 10 dBb oE N = versus the one with / 15 dBb oE N = . In numerical 

terms, this is a degradation of 2 dB for 1ρ =  to about 4 dB for 0.7 and 0.5ρ ρ= =  

at 510bP −= . 
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b. Comparison of Performances between the Receptions with PSI 
and without PSI when / 10 dBb oE N =  

When 1ρ =  (barrage jamming), there is no difference in performance 

whether PSI is used or not. This is because the probability of channel symbol error is 

solely dependent on the conditional probability ( )2sp , which is the case where both 

diversity receptions are corrupted by PNI and is the same both with and without PSI. 

For, 0.7 and 0.5ρ ρ= =  there is an improvement in performance with PSI compared to 

the one without PSI of about 1.7 dB at 510bP −= . This is an expected outcome since PSI is 

a technique used to reduce the effect of PNI. It is can also be observed that in both cases 

(with and without PSI) the plots for 0.7 and 0.5ρ ρ= = converge at 510bP −= . For 

0.3ρ =  we have / 9 dBb IE N = and 10.6 dB for PSI and no PSI, respectively. As 

expected, there is a gain in the case with PSI, which is about 1.6 dB. Thus, for all values 

of 1ρ <  under examination there is an improvement in performance when PSI is 

available. 

3. Performance with and without PSI for / 9 dBb oE N =  

The performance of 32-ary signaling in an AWGN and PNI environment with and 

without PSI for / 9 dBb oE N = is shown in Figure 9.  

a. Comparison of Performances with / 15 dB
b oE N = , 

/ 10 dBb oE N = and / 9 dBb oE N =  

When / 9 dBb oE N = , the degradation in performance due to PNI as 

compared to barrage jamming is 3.3 dB and 6.2 dB at 510bP −=  for 0.7 and 0.5ρ ρ= = , 

respectively. Not only is there a greater degradation compared to the previous cases 

( / 15 dBb oE N = and / 10 dBb oE N = ), but it can also be seen that there is a rapid 

degradation in the performance between 0.7 and 0.5ρ ρ= = , a phenomenon, which was 

also observed when the presence of PNI without PSI was examined in Chapter IV. 
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Figure 9.  Performance of 32-ary orthogonal signaling with (31, 15) RS encoding 
with and without PSI for different values of ρ in both AWGN and PNI 
with / 9 dBb oE N = . 

Moreover, the performance of the receiver for 0.3ρ =  is worse compared 

to barrage jamming by about 2.6 dB at 510bP −= . A comparison with / 10 dBb oE N =  
for 0.3ρ =  shows an expected degradation, which is about 4.2 dB. Here again, the 

absolute performance for various values of ρ is worse compared to those obtained for 

greater values of /b oE N . In a manner similar to the case without PSI, we can say that 
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with / 9 dBb oE N =  the receiver reaches a critical point at which performance is 

vulnerable to PNI. It is also observed that for values of /b IE N  greater than 20 dB, the 

performances with and without PSI start to converge. 

b. Comparison of Performances between the Receptions with PSI 
and without PSI when / 9 dBb oE N =  

Here again, when 1ρ =  (barrage jamming) there is no difference in 

performance whether PSI is used or not. For 0.7 and 0.5ρ ρ= = , there is an improvement 

in performance with PSI compared to the one without PSI of about 2.9 dB and 3.9 dB, 

respectively, at 510bP −= . Thus, it is shown again that the use of PSI reduces the effect of 

PNI. For 0.3ρ = , we have / 13.2 dBb IE N =  and 14.8 dB for PSI and no PSI, 

respectively, at 5 10bP −= . As expected, there is a gain in the case with PSI, which is about 

1.6 dB. This means that for all values of 1ρ <  under examination there is an 

improvement in performance when PSI is available. 

The numerical results of Figure 9 are presented in Table 3. 

Table 3. Performance of 32-ary orthogonal signaling with (31, 15) RS encoding 
with and without PSI for different values of ρ  in both AWGN and PNI, 
with / 9 dBb oE N =  at 5 10bP −= . 

5/ 10 dB at 10b o bE N P −= =   
ρ /  dBb IE N   

PSI 
/  dBb IE N  

No PSI 

 
1 

 
10.6 

 
10.6 

 
0.7 

 
13.9 

 
16.8 

 
0.5 

 
16 

 
19.9 

 
0.3 

 
13.2 

 
14.8 
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C. CHAPTER SUMMARY 

In this chapter, the effects of AWGN and PNI with PSI on the performance of the 

compatible JTIDS waveform for noncoherent demodulation were examined. This 

required the evaluation of the conditional probabilities of channel symbol error for 

0,  1i =  and 2 hops affected by pulsed-noise interference. The key point of this analysis 

was that the knowledge of PSI simplified the evaluation of the conditional probability of 

channel symbol error for 1i =  hop experiencing PNI, since the specific hop was 

discarded.  

The numerical observations made are summarized as follows. For comparatively 

large values of ρ ( 0.5 1ρ≤ ≤ ), it was shown that the required /b IE N  for 510bP −=  

increases as ρ  decreases. We recall that the same observation was made when the 

presence of PNI without PSI was examined in the previous chapter. Moreover, the 

absolute performance of the receiver for various values of ρ  degrades in an analogous 

manner as values of /b oE N decreases. In all cases investigated for 1ρ < , when PSI was 

available there was an improvement in the performance of the receiver compared to when 

PSI was nonexistent. This confirmed the fact that having PSI is valuable in order to 

reduce the effect of PNI. The comparison between / 10 dBb oE N = and / 9 dBb oE N = for 

all values of ρ  illuminated an increased degradation in the performance of the receiver 

for / 9 dBb oE N = . This implied that for smaller values than / 9 dBb oE N =  the 

degradation would increase rapidly, a fact which was confirmed when such cases were 

examined. 

In the next chapter, this thesis will offer a summary of the conclusions made in 

Chapters III, IV and V, as well as recommendations for future work. 
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VI. CONCLUSIONS AND FUTURE WORK 

A. CONCLUSIONS 

This thesis presented the analysis of a JTIDS/Link-16 compatible waveform, 

utilizing 32-ary orthogonal signaling with (31, 15) RS coding and noncoherent detection. 

A sequential diversity of two, consistent with the double-pulse structure of JTIDS, was 

also considered.  The type of side information considered was perfect side information.   

Initially, the performance of the compatible JTIDS waveform with a diversity of 

two and detected noncoherently in an AWGN environment was investigated. A 

comparison was conducted between the double-pulse structure waveform and the single-

pulse structure waveform. As expected, it was shown that the double-pulse structure 

outperforms the single-pulse structure, thus, verifying that diversity is an effective 

technique employed in noisy environments. 

Consequently, the effects of both AWGN and PNI on the performance of the 

JTIDS compatible waveform for noncoherent demodulation were examined. This 

required the evaluation of the conditional probabilities of channel symbol error for 

0,  1i =  and 2 hops affected by pulsed-noise interference. The numerical results showed 

that for large values of ρ  ( )0.5 1ρ≤ ≤  the required /b IE N  increases as ρ  decreases for 

a fixed bP . The analysis also showed that with / 9 dBb oE N =  the degradation increases 

rapidly for values of ρ  smaller than 1. Finally, it was observed that the absolute 

performance of the receiver for various values of ρ  degrades in an analogous manner as 

/b oE N decreases.  

It was demonstrated that the existence of PSI is beneficial to tactical datalink 

users, since PSI reduces the effect of PNI. In order to evaluate the gains as a result of PSI, 

we derived an expression for the performance of the JTIDS compatible waveform in an 

AWGN plus PNI environment. This required the evaluation of the conditional 

probabilities of channel symbol error for 0,  1i =  and 2 hops affected by pulsed-noise 

interference. The knowledge of PSI simplified the evaluation of the conditional 
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probability of channel symbol error for 1i =  hop experiencing PNI. The numerical 

analysis showed that for comparatively large values of ρ, /b IE N  increases as ρ 

decreases. Moreover, the absolute performance of the receiver for various values of ρ 

degrades in an analogous manner as values of /b oE N decreases. In all cases investigated 

with 1ρ < , when PSI was available there was an improvement in the performance of the 

receiver compared to when PSI was nonexistent. 

Summarizing, the general fact that the double-pulse structure outperforms the 

single-pulse structure was demonstrated for the JTIDS compatible waveform under 

examination. PNI degrades the performance of the receiver, but the existence of PSI is 

beneficial for tactical datalink users, since it reduces the effect of PNI. It is known that 

the JTIDS/Link-16 waveform is currently received noncoherently. Given the fact that the 

compatible JTIDS waveform examined in this thesis is noncoherently detected and 

employs a double-pulsed structure that outperforms the single-pulse structure waveform 

(also noncoherently detected), the analysis offered in this thesis could potentially be 

beneficial for JTIDS/Link-16 designers. 

B. FUTURE RESEARCH AREAS 

We examined a compatible JTIDS/Link-16 waveform that consists of 32-ary 

orthogonal signaling with (31, 15) RS coding detected noncoherently. This waveform 

employs a double-pulse structure that provides an improvement in performance over the 

single-pulse structure JTIDS/Link-16 waveform. 

We observed that the examination of the effects of AWGN and PNI on the 

performance of the JTIDS compatible waveform for noncoherent demodulation presented 

some computational difficulties. The numerical results showed that the techniques used to 

overcome these computational difficulties provided reasonable results for a specific range 

of ρ , that is 1 0.3ρ≤ ≤ . However, the results obtained for 0.3ρ <  were not as expected. 

Accordingly, this remains an area for future research. 

Possible future work could also be to examine changing the code rate while 

keeping the block length the same in order to see if the throughput can be increased 
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without reducing performance. Moreover, a concatenated code in place of the (31, 15) RS 

block code could be used, perhaps using a (31, 15) RS code as the inner code, to see if 

performance can be improved without decreasing throughput significantly.  
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